
1. Introduction
Ocean observations are vital for improving our understanding of oceanic variability and its impact on climate. 
While satellite observations have the advantage of covering global surface ocean with fine spatial and temporal 
resolution, in situ measurements can detect both near-surface and subsurface variability, even though the data 
are limited in space and time. To improve the ocean state estimate, ocean data assimilation (DA) is applied in 
numerical models, where the information gained from satellite and in situ observations is allowed to be propa-
gated in time and space to uncovered regions using dynamical and physical constraints (Penny et al., 2019). The 
resultant ocean reanalysis products have been used to initialize the ocean component of coupled forecast models 
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(Balmaseda, 2017; Meehl et al., 2014). While the importance of subsurface ocean initialization with in situ DA 
in seasonal, interannual, and decadal climate predictions is widely recognized (Balmaseda et al., 2009; Meehl 
et al., 2014), how ocean in situ DA influences subseasonal predictions is yet to be explored.

Of particular interest is the Madden–Julian Oscillation (MJO; Madden & Julian,  1971,  1972), a large-scale 
phenomenon of deep convection and circulation, the dominant mode of atmospheric intraseasonal oscillations at 
20–90 day periods in the tropical climate system. On subseasonal timescales, MJO is recognized as the leading 
source of predictability (e.g., H. Kim et al., 2021; Waliser et al., 2003). Therefore, the prediction skill of MJO is 
commonly used as an indicator of model subseasonal prediction skill.

The MJO can modulate weather and climate phenomena around the globe, and such modulation depends on the 
location of its convection center (e.g., Cassou, 2008; C. Zhang, 2013). The Maritime Continent (MC), an archi-
pelago sitting in the Indo-Pacific Warm Pool connecting the tropical Indian and Pacific oceans, is one of such key 
locations in MJO propagation. As the MJO propagates eastward from the Indian Ocean to the Western Pacific, it 
undergoes the MC barrier effect—tending to decay and sometimes stall when crossing the MC region (Hendon 
& Salby, 1994; Matthews, 2008)—due to topography interference (Wu & Hsu, 2009), strong diurnal convection 
(Ajayamohan et  al.,  2021; Hagos et  al.,  2016), and many other factors. Using observational analysis, recent 
studies have investigated the sea surface temperature (SST) differences between the MJO events that pass the 
MC region and the MJO events that are stalled. Significant SST differences have been found both locally in the 
MC region (C. Zhang & Ling, 2017) and remotely in the southeast Indian Ocean and the western-central tropical 
Pacific (L. Zhang & Han, 2020). Surface fluxes cannot explain the SST difference between those two types of 
MJO events, thus it might be the subsurface ocean that contributes to such differences (C. Zhang & Ling, 2017; 
L. Zhang & Han, 2018), which makes the subsurface ocean initialization with in situ DA potentially crucial for 
predicting the MJO propagation across the MC.

To assess the impact of ocean in situ DA on subseasonal predictions, we focus on forecasting the MJO propagation 
across the MC region using Observing System Experiments (OSEs) with the European Centre for Medium-Range 
Weather Forecasts (ECMWF) coupled subseasonal forecast system. The paper is organized as follows. Section 2 
describes the ECMWF subseasonal forecast system, the data used in this study and the metric selected to evalu-
ate the forecast performance. Section 3 explores the forecasted ocean mean state biases with and without ocean 
in situ DA and their differences, examines impact of such differences on MJO propagation across the MC, and 
interprets the results. Section 4 provides a summary and discussion.

2. Data and Methodology
2.1. Data

2.1.1. OSE Experiments and Model Forecast

Two sets of OSEs have been carried out to understand the role of in situ observations (including Argo, Moor-
ings, XBT, CDT and marine mammals) in the Ocean Reanalysis System 5 (ORAS5) of ECMWF (similar to 
Zuo et al., 2019). These OSEs have been conducted with the low resolution configuration of ORAS5 (O5-LR) 
at approximately 1° horizontal resolution and 42 vertical levels. The only difference with respect to the O5-LR 
experiments in Zuo et al. (2019) is that the two OSEs in this study do not assimilate altimeter data and the bias 
correction has been switched off. One experiment assimilates all in situ observations (all_obs), while the other 
experiment (no_insitu) does not. However, no_insitu still contains a substantial amount of information from the 
real world by being constrained by SST and atmospheric reanalyzes of surface fluxes, as all_obs does.

Coupled subseasonal forecasts are initialized from these two OSEs respectively. The two sets of 32-day forecasts 
are done with the ECMWF model cycle 47R1. They are initialized on the first day of each month from 1993 to 
2015 with each set having five ensemble members. The atmosphere initial conditions are perturbed by singular 
vectors and ensemble data assimilation (Vitart et al., 2019). The ocean initial conditions are generated by perturb-
ing both the observations and surface forcings (Zuo et al., 2017). In this way, the atmospheric initial conditions 
are identical for these two sets of forecasts correspondingly, and since SST nudging is on, the only major differ-
ence between these two sets of forecasts is the subsurface initialization. We name the two sets of forecasts as the 
all_obs experiment (initialized from the OSE with all in situ observations assimilated) and the no_insitu experi-
ment (initialized from the OSE with no in situ observations assimilated).
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From the model forecast, we examine SST, outgoing longwave radiation (OLR) and variables needed for the 
Moist static energy (MSE) budget analysis (introduced later in Section 3.3). All the variables above are mapped 
onto a 1° × 1° horizontal grid. We also analyze the daily Real-time Multivariate MJO Index (RMMI, Wheeler & 
Hendon, 2004) from the forecast output, which monitors the location and the amplitude of the MJO.

For SST, the 12 hourly instantaneous values from the forecast output are used to calculate the daily mean by 
averaging the values at 0 and 12hr on each forecast lead day. For OLR, the forecast output is in the form of an 
accumulated sum (e.g., the output at 72hr would be the integrated sum of OLR from 0 to 72hr); thus we use the 24 
hourly instantaneous values to calculate the daily increment, and then get the daily mean OLR flux. For the MSE 
budget analysis, we choose the 24 hourly instantaneous output to do daily tendency calculation. Additionally, for 
a flux term, we treat it in a similar way as we treat OLR. For an advection-related variable (e.g., wind velocity, 
temperature, geopotential, and specific humidity), we average the instantaneous values of 0 and 24hr at each day.

2.1.2. Observation and Reanalysis

We examine the model SST forecasts with the daily mean SST (0.25°  ×  0.25°) from ECMWF ORAS5. To 
compare with the forecast results, the ORAS5 SST is remapped to the 1° × 1° grid. For the OLR, we choose 
the daily interpolated OLR (2.5° × 2.5°) from the National Oceanic and Atmospheric Administration (NOAA; 
Liebmann & Smith, 1996). Since there is no direct OLR comparison on each grid point, in this study we do not 
remap the OLR from the forecast output with 1° × 1° resolution to the 2.5° × 2.5° grid in observation. For the 
MSE budget terms, we analyze the variables from ECMWF reanalysis version 5 (ERA5). Although we acknowl-
edge that reanalysis is constrained by observations but is different from real observations from the field, for 
simplicity, in the following sections, we use the word “observation” referring to both the observation and the 
reanalysis data.

2.2. Methods of MJO_P Identification

The MC barrier effect is exaggerated in climate models, where fewer MJO events cross the MC than in reality 
(H. Kim et al., 2018). Therefore, in this study, we focus on the MJO events that continuously propagate from the 
Indian Ocean across the MC to the Western Pacific, denoted by MJO_P events, and use the number of success-
fully forecasted MJO_P events as a metric to evaluate the performance of all_obs and no_insitu. The MJO_P 
events are identified by the RMMI and a new MJO tracking method based on OLR anomaly (OLRa) respectively.

2.2.1. RMMI-Based MJO_P Identification

The observed RMMI is tailored into the same 32-day segments as those in the forecasts. With the 32-day RMMI, 
an MJO_P event is defined as one that experiences the propagation from Phase 2 or 3 (over the Indian Ocean), 
through Phase 4 or 5 (over the MC) and then into Phase 6 or 7 (over the Western Pacific) within the 32 days, and 
with an RMMI magnitude always greater than 1 during this process.

The RMMI intrinsically has its weight projected more on the circulation field, because there are 2 wind fields for 
circulation while only 1 for convection involved in the RMMI calculation, with all the fields equally weighted in 
the combined EOF analysis. However, the atmospheric heating generated by the MJO deep convection plays a key 
role in teleconnection (e.g., Henderson et al., 2017). Thus, in order to focus on the convective signals, we develop 
a new method of MJO tracking using the OLRa. Since the new OLRa-based method does not consider the 
large-scale circulation while the RMMI-based method weighs more on circulation than on OLRa, it is expected 
that this new method might pick up some events that are not the canonical MJO events as defined by RMMI.

2.2.2. OLRa-Based MJO_P Identification

As for the observed RMMI, the observed OLR is also tailored into the 32-day segments, with the anomalies 
calculated by removing the 23-year climatological daily mean from the daily OLR. The OLRa in forecasts is 
calculated by removing the 23-year climatology as a function of both the forecast initialization month and the 
forecast lead time. Similar to Kiladis et al. (2005) and Gottschalck et al. (2013), a 2D Fast Fourier Transform is 
then applied to band-pass filter the OLRa for its eastward propagation with zonal wavenumber 1–9. After the 
temporal and zonal filtering, a 3-day running mean is further applied to the 32-day segment to filter out synoptic 
variability, making the 32-day segment into a 30-day segment. In this way, the MJO-related convection signals 
are obtained.
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The filtered OLRa is then averaged from 15°N to 15°S with latitudinal weight adjustment, after which the stand-
ard deviation (STD) of the averaged OLRa can be calculated. We use −1 STD (the black contour in Figure 1) as 
the threshold of enhanced convection, and detect the MJO track based on those active MJO convection signals 
with negative anomalies exceeding 1 STD.

We describe the detailed steps in identifying the MJO tracks and selecting the MJO_P events as follows.

1.  90°E is chosen as the reference longitude, representing the western edge of the MC. It helps to capture the 
MJO convection from the Indian Ocean into the MC region. Based on this reference longitude, we can easily 
get the time index when the active MJO signal first approaches the western boundary of the MC (e.g., the 
starting day of the thick red line in Figure 1a and the starting day of the thin red line in Figure 1b), and also 
the corresponding location of the convection center (the mean longitude weighted by the OLRa magnitude at 
each longitude with active MJO convection, e.g., the starting longitude of the thick red line in Figure 1a and 
the starting longitude of the thin red line in Figure 1b).

2.  From the starting day onward, the longitudinal convection band of the next day is identified. If there is an 
active convection band at day i + 1, and this band overlaps with the band at day i in longitude (e.g., band B 
overlaps with band A in Figure 1a), then the time index and its corresponding longitude of the convection 
center are recorded, and the tracking algorithm continues to propagate forward. If there is no active convec-
tion detected at day i + 1, or the detected band does not overlap with the band at day i (e.g., band H does not 
overlap with band G in Figure 1b), then the tracking algorithm for this MJO track would stop. If two or more 
bands are detected at day i + 1 for the same MJO track, we select the one overlapping with the band at day i 
(e.g., band C is not selected because it does not overlap with band A in Figure 1a). If still two or more bands 
are left, the distance between the convection center of day i and that of day i + 1 is calculated for each band 
at day i + 1, as well as the convection strength (the sum of the OLRa within each active band). Only the band 
that can minimize the value of “distance over strength” is selected into the current MJO track (e.g., band E 
and F both overlap with band D in Figure 1a, but only the band F is included in the propagating MJO track).

3.  After identifying these MJO tracks in each 30-day segment, those whose convection center passes 150°E (the 
eastern edge of the MC) prior to the end of the 30 days are categorized as MJO_P events (e.g., the MJO track 
in Figure 1a).

Figure 1. Schematic representation of the identification of the MJO_P events. The color shading shows filtered OLRa 
averaged over 15°N to 15°S. Negative anomalies exceeding 1 STD are defined as active MJO convection, and are denoted 
by the black contour. The two white vertical lines mark the western (90°E) and eastern (150°E) edges of the MC region. 
The red lines are the tracks for the MJO convection center. The horizontal black lines denote the longitudinal range of the 
active convection bands. (a) The tailored 32-day segment in observation (so that it shares the same time coordinate as in 
the forecast) starting from 05 January1997, as an example of an MJO_P event. (b) The same as (a) but starting from 01 
January1998, which is not an MJO_P event. See text in Section 2.2.2 for details of the identification algorithm and meaning 
of bands A to H.
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With the tracking method described above, we obtain the MJO_P events with their specific tracks characterized 
by the daily indices and the corresponding longitudinal locations of the convection center along with the MJO 
propagation.

3. Results
3.1. SST Mean State

Before starting the detailed MJO_P evaluation, we first examine the SST mean state. It would increase the chances 
for ocean subsurface DA to have an impact on the MJO forecast if some pronounced SST mean state differences 
between all_obs and no_insitu could be seen.

In general, all_obs and no_insitu have similar ocean mean state bias pattern and same bias growth sign (Figure 
S1 in Supporting Information S1). On the initialization day, the model has warm SST biases in the Indian Ocean 
and cold SST biases in the cold tongue region (Figure 2a). Since we average the SST at 0 and 12hr to represent 
the forecasted daily mean SST on day 0, it is not surprising to see non-zero biases in forecasts on the initialization 
day because the forecast error at lead time 12hr has already been introduced. Then the biases grow and expand 
gradually (Figures 2c, 2e and 2g, 2i and 2k). Significant warm SST biases develop in the Indian Ocean and the 
warm pool, and significant cold SST biases develop in the cold tongue region and the south MC seas.

Figure 2. (Left) SST bias composite for all_obs. (a and c) show the daily mean SST biases in all_obs on the forecast 
initialization day and the forecast lead day 1. (e, g, i, and k) show the weekly mean SST biases in all_obs on the first, second, 
third, and fourth forecast lead week. (Right) Same as the left one but for SST differences between all_obs and no_insitu. The 
two-sided t-test has been applied and only values exceeding the 95% significance level are plotted. Notice that the colorbars 
for the left column and for the right column are different.
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Since SST nudging is on for both OSEs, most SST differences between all_obs and no_insitu are within 0.075°C 
on the initialization day (Figure 2b). The maximum difference happens in the cold tongue region, where the 
SST in no_insitu is colder than that in the all_obs (Figure 2b). The SST difference grows as the forecast goes 
on, becoming greater than 0.2°C in week 4 of the forecast (Figure 2l). Considering that the model has large cold 
biases in the cold tongue region, all_obs actually helps to reduce the cold biases in the cold tongue region.

Over other regions, though all_obs and no_insitu start from small SST differences, these differences also gradu-
ally develop with a growing amplitude and an expanding area (Figures 2d, 2f, 2h, 2j and 2l). Over the MC seas, 
the South Indian Ocean and the north part of the tropical Western Pacific, all_obs is warmer than no_insitu and 
becomes even warmer as the forecast goes on. Though most of those differences are still within 0.125°C, we spec-
ulate that there might be some cases where those SST differences in the individual MJO events could influence 
whether or not the MJO crosses the MC.

3.2. MJO_P Events

In this section, we examine whether the regional and large-scale SST differences between experiments all_obs 
and no_insitu affect the prediction skill in forecasting MJO across the MC.

3.2.1. Evaluation Using RMMI

Based on RMMI, we identify 39 MJO_P events in the observation, 16 MJO_P events in all_obs ensemble mean, 
and 17 in no_insitu ensemble mean (Table 1). Among the 39 observed MJO_P events, 12 (13) are captured by the 
ensemble mean forecast of all_obs (no_insitu). Both all_obs and no_insitu predict some spurious MJO_P events 
that are not in the observation. The two forecast experiments yield similar results in successfully forecasting the 
observed MJO_P events, except for the January 1995 event, when the all_obs predicts the MJO to continue stay-
ing at Phase 5 till the end, whereas the no_insitu predicts the MJO to transition to Phase 6 but shortly after return 
to Phase 5. However, when looking at the individual ensemble members for this event, we find that actually the 
MJO_P track is predicted by 3 ensemble members in all_obs and by 2 ensemble members in no_insitu. Hence, 
the two experiments may not have significantly different prediction skills for the 1995 event.

We also investigate the MJO events that are active over the Indian Ocean (Phase 2 or 3) on the forecast initiali-
zation day and the corresponding day in the observation (the MJO_IO events). During the 23-year observational 
period (1993–2015), 44 events are active over the Indian Ocean and 21 of them propagate into the Western Pacific 
within 32 days (the MJO_IO_P events), yielding a passing rate of 0.48 (Table 1). By contrast, in all_obs (no_
insitu), only 11 (12) out of the 45 (45) events pass the MC region, with a passing rate of 0.24 (0.27). These results 
are consistent with existing studies in which the model exaggerates the MC barrier effect. And our results show 
no improvement in all_obs compared to no_insitu. Such deficiency is likely a prediction skill problem instead of 
a predictability problem, since it is common for all ensemble members (see bracket numbers in Table 1).

Overall, the MC prediction barrier exists in both experiments. All_obs and no_insitu have the same prediction 
skill for forecasting MJO propagation across the MC when evaluated with RMMI. Differences in ensemble mean 
analysis versus individual ensemble member analysis will not change our conclusion.

3.2.2. Evaluation Using OLRa

Based on the filtered OLRa, there are 79 MJO_P events detected in observation. Among them 35 (37) are detected 
in the ensemble mean OLRa field of all_obs (no_insitu). In addition to these, all_obs (no_insitu) forecasts 35 (31) 

Table 1 
RMMI-Based Evaluation

Number of MJO_P a
Number of MJO_P in 

OBS b Number of MJO_IO c Number of MJO_IO_P c
Passing 

rate

OBS 39 – 44 21 0.48

all_obs 16 [13,22,25,21,19] d 12 [8,14,16,14,10] 45 [45,45,45,44,45] 11 [7,12,10,12,9] 0.24 [0.22]

no_insitu 17 [15,25,25,22,14] 13 [10,14,17,11,8] 45 [45,45,45,44,45] 12 [10,14,12,11,8] 0.27 [0.25]

 aPlease see definition of MJO_P events in Section 2.2.  bMJO_P in OBS is defined as an event that happens in the observation 
and is also successfully predicted by the model forecasts.  cPlease see definition of MJO_IO events and MJO_IO_P events in 
Section 3.2.1.  dNumbers in the bracket are for the five individual ensemble members.
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extra MJO_P events which are not seen in the observation (Table 2). As expected, some MJO_P events are identi-
fied by both the RMMI-based method and the OLRa-based method, but each method also identifies independent 
events. Additionally, compared to the number of MJO_P events identified using RMMI, we see more MJO_P 
events using OLRa. In general, those extra MJO_P events also show evidence of propagation over the Maritime 
Continent in their RMMI. However, some of them can not maintain their RMMI amplitude to be greater than 1 in 
the process, some of them start from Phase 4 or 5 instead of 2 or 3, and some of them are occasionally interrupted 
by Phase 1 or Phase 8 during propagation. Overall, the OLRa-based method has looser restrictions on identifying 
MJO_P events than the RMMI-based method.

Among the 44 events that are initially active in Phase 2 or 3 (over the Indian Ocean) in the observation, 22 of them 
propagate into the Western Pacific when tracked using the OLRa, with a passing rate of 0.5. For model forecasts, 
12 (13) out of 45 (45) reach the Western Pacific within the forecast time period in all_obs (no_insitu), with a 
passing rate of 0.27 (0.29). Similar to what we have found using RMMI, both experiments have a much lower 
passing rate compared to the observation, and so does each individual ensemble member (see bracket numbers 
in Table 2). Additionally, for the MJO_P events identified in the ensemble mean of one experiment but not in the 
other, we further analyze their individual ensemble members. There is no such a single event that all ensemble 
members in one experiment forecast the MJO_P but all ensemble members in the other do not.

Therefore, we conclude that when evaluated with the OLRa, the all_obs and no_insitu also have similar predic-
tion skill, and the initialization with ocean in situ DA does not help improve the prediction skill of MJO propa-
gation across the MC. We further perform MJO process diagnostics to identify additional sources of errors in the 
MJO evolution in these forecasts and present the results below.

3.3. Process Diagnostics

Existing theories suggest that MJO events are generated primarily from atmospheric internal variability (e.g., 
Adames & Kim, 2016; Sobel & Maloney, 2013); air-sea interaction can modify their amplitude, frequency, and 
propagation. Hence, if atmospheric model biases dominate the forecast biases, the potential improvement from 
ocean DA would be hindered. This is probably why even though there are growing regional and large-scale SST 
mean state differences between all_obs and no_insitu, the forecast skill of MJO across the MC still remains the 
same in the two experiments. To understand the causes for the forecast biases in both experiments, we carry out 
process diagnostics by doing MSE budget analysis in the MC region.

MSE budget analysis has been employed in MJO studies based on the “Moisture Mode” theory of MJO (e.g., 
Kiranmayi & Maloney, 2011; Seo et al., 2014; D. Kim et al., 2014, 2017; Y.-K. Lim et al., 2021), based on the 
hypothesis that the growth, decay and the eastward propagation of the MJO convection is governed by the intra-
seasonal moisture anomalies. The MSE is defined as m = CpT + gZ + Lvq, where Cp is the specific heat of dry 
air at constant pressure, T is the air temperature, g is the gravitational acceleration, Z is the geopotential height, 
Lv is the latent heat of vapourization, and q is the specific humidity. The MSE budget equation can be written as

{
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

}′

= −

{
𝑢𝑢
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

}′

−

{
𝑣𝑣
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

}′

−

{
𝜔𝜔
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

}′

+ 𝐿𝐿𝐿𝐿 ′
+ 𝑆𝑆𝐿𝐿 ′

+ ⟨𝐿𝐿𝐿𝐿 ⟩′ + ⟨𝑆𝑆𝐿𝐿 ⟩′ (1)

where u is the zonal wind velocity, v is the meridional wind velocity, ω is the pressure velocity, p is the pressure, 
LH is the surface latent heat flux, SH is the surface sensible heat flux, LW is the longwave radiation, and SW is 
the shortwave radiation. The angle bracket 𝐴𝐴 ⟨⟩ stands for the net radiation into the atmosphere (from both the ocean 

Table 2 
OLRa-Based Evaluation

Number of MJO_P
Number of MJO_P in 

OBS Number of MJO_IO Number of MJO_IO_P
Passing 

rate

OBS 79 – 44 22 0.50

all_obs 70 [70,65,65,69,68] 35 [30,25,33,27,29] 45 [45,45,45,44,45] 12 [15,7,11,10,14] 0.27 [0.25]

no_insitu 68 [76,69,58,75,62] 37 [35,26,21,32,32] 45 [45,45,45,44,45] 13 [13,10,8,16,13] 0.29 [0.27]

Note. The same as Table 1 but for OLRa-based evaluation.
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surface and top of the atmosphere). The curly bracket 𝐴𝐴 {} denotes the mass-weighted vertical integral over the pres-
sure levels from 100 hPa to 1,000 hPa. The prime symbol ′ denotes the intraseasonal anomaly. In this study, we 
use the 10-day running mean after removing the daily climatology to represent the intraseasonal anomalies. We 
apply a moving average instead of a band-pass filter due to the limitation caused by our 32-day forecast segments 
of a short period.

3.3.1. Pre-Convection MSE Accumulation

As discussed in Section 3.2.2, less than half of the OLRa-based MJO_P events in observation can be captured 
by the model forecast for both no_insitu and all_obs. Yet, the model does predict a similar amount of the total 
MJO_P events as what we get in observation (∼70), though half of them are the “false” events that do not appear 
in the observation. This suggests that the model might be producing the MJO_P events because of wrong physical 
mechanisms, that is, the model might overestimate the contribution of some terms to the positive intraseasonal 
MSE tendency anomaly prior to the MJO convection onset, and underestimate the contribution of some others. 
We are especially interested in the terms whose positive/negative contribution to the MSE accumulation before 
the MJO convection onset is underestimated/overestimated by the model, because they can give us a hint of why 
the model is exaggerating the MC barrier effect.

To identify such terms, we apply the MSE budget analysis on MJO_P events detected in the observation, all_obs 
and no_insitu respectively. We choose the MJO_P events in the model forecasts instead of the missed MJO_P 
events in the model (the events that exist in the observation but the model fails to forecast) as, by choosing the 
MJO_P events produced by the model, we have the locations and the time indices for each MJO track, and thus 
can analyze the 10-day window (in order to extract the intraseasonal MJO signals by excluding synoptic variabil-
ity) to best represent the pre-MJO MSE accumulation for a certain region. Thus, the MSE accumulation windows 
in the model and in the observation no longer have to be the same with respect to the forecast lead time, which 
helps us understand the model physics in MSE accumulation better. Additionally, we assume that the model has 
systematic biases in response to the MJO activity. Hence, the biases we find in the forecasted MJO_P events 
would also exist in the missed MJO_P events, and can potentially explain why the model fails to forecast those 
events. In order to understand the model mechanism better, we analyze the individual ensemble members instead 
of the ensemble mean.

The region over which we choose to apply the MSE budget analysis is the eastern part of the MC (130°E−150°E, 
15°N–15°S). It connects the MC and the Western Pacific, thus is the key region for the MJO to propagate into the 
Western Pacific. All MSE budget terms in the following analyses are averaged over this box region.

To select the 10-day window for representing the MSE accumulation before the MJO convection onset in our 
region of interest, we search for the day when the MJO_P track for the first time arrives to the east of 130°E, and 
denote it as the day_130 for that MJO_P event. Note that in the OLRa-based MJO_P tracking method, we reduce 
the 32-day observation/forecast segment into a 30-day segment by performing a 3-day running mean, so the day 
i in the 30-day segment would be the day i + 1 in the original 32-day segment. After mapping the day_130 in 
the 30-day segment back into the 32-day segment, we transition the original 32-day observation/forecast to a 
new time axis with the day_130 now becoming the new day 0. Then, we compute the anomalous MSE tendency 
averaged within a 10-day window as a function of the days lagging day 0. If day i is beyond the 32-day segments, 
then the intraseasonal MSE tendency anomaly would be a null value; if only a part of the days from the 10-day 
window (day i-9 to day i) is within the 32-day segment, then we calculate the intraseasonal MSE tendency anom-
aly based only on that part.

In this way, we obtain the intraseasonal MSE tendency anomalies as a function of the lag for the day_130 of each 
MJO_P event. These MSE tendencies are then composited along the new time axis for the observation, all_obs 
and no_insitu respectively. From Figure 3a, we can clearly see that before the MJO convection arrives at 130°E, 
the eastern MC has a positive MSE accumulation, and after that, the eastern MC has a negative MSE tendency 
due to the moisture discharge caused by the precipitation. Such tendencies are seen in both the model and the 
observation, though the amplitude of both MSE accumulation and discharge is smaller in the model. Addition-
ally, since all_obs and no_insitu closely follow each other in Figure 3a, we conclude that all_obs and no_insitu 
perform similarly regarding the MSE recharge and discharge. Lag −6 (the dashed vertical line in Figure 3a) is 
selected as the MSE accumulation window since it is the maximum point for the observation and also a local 
maximum for both all_obs and no_insitu, and therefore can be considered as a common MSE accumulation 
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period for both the observation and the model forecast. (Lag −5 and lag −2 have also been analyzed. The results 
we show next are not sensitive to the lag we choose.)

Then, the intraseasonal MSE tendency within the lag −6 window (from lag −15 to lag −6) is calculated for each 
MJO_P event. The MSE tendencies can be a null value (window out of the 32-day segment), a positive value or 
a negative one. This is expected because the MJO varies from event to event, and a single lag window selected 
based on the composite might not explain the pre-convection MSE accumulation for every individual event. Since 
we concentrate on the physical mechanisms related to the positive MSE accumulation, only those with a positive 
tendency are included in the composite analysis for the MSE budget. In the end, we obtain 50 observed MJO_P 
events, 202 all_obs MJO_P events and 193 no_insitu MJO_P events for composite MSE budget analysis. To 
avoid sampling bias, we examine the seasonality for these events. The selected MJO_P events in the observation, 
all_obs and no_insitu all approximately spread equally in all seasons (Figure S2 in Supporting Information S1). 
This further assures that the results in the later analyses reflect the process-induced biases or differences.

Overall, all_obs and no_insitu have similar amplitudes of composite MSE budget terms, which from a perspec-
tive of physical processes supports our conclusion in Section 3.2 that these two sets of experiments have similar 
prediction skills on MJO propagation across the MC. Noticeably, both all_obs and no_insitu underestimate the 
intraseasonal MSE tendency by 2–3 Wm −2, and the most significant underestimation for the MSE budget terms 
happens in the meridional advection (Figure 3b). The positive meridional advection in the forecast composite is 
only ∼50% of that in the observational composite (and this is the same with lag −5 and lag −2 as well, see Figure 
S3 in Supporting Information S1). Besides the composite analysis, multiple linear regression is also applied to 
estimate the contribution to the MSE accumulation (the predictand) from each MSE budget term (the predictors) 
on the right hand side of Equation 1, with each MJO_P event corresponding to one sample. The regression coef-
ficient for the meridional advection is 0.67 in observation, 0.35 in all_obs and 0.37 in no_insitu, which further 

Figure 3. (a) The 10-day averaged MSE tendency for the MJO_P events in observation (black), all_obs (blue) and no_insitu (red) composited based on the lag to the 
day when the MJO_P track for the first time arrives to the east of 130°E (day_130). (b) MSE budget composite for the MJO_P events in observation (black), all_obs 
(blue) and no_insitu (red) that have a positive MSE accumulation in the lag −6 window. ZADV, MADV and VADV stand for zonal, meridional and vertical MSE 
advection respectively. All MSE budget terms are averaged over the eastern MC (130°E−150°E, 15°N–15°S).
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indicates that the model significantly underestimates the meridional advection (see Table S1 in Supporting Infor-
mation S1 for the regression coefficients of other terms). Such underestimated meridional advection gives us a 
clue that the model might be exaggerating the MC barrier effect out of the insufficient meridional advection.

3.3.2. Possible Sources for the Underestimated Meridional Advection

Based on the moisture mode theory of the MJO, moisture is the core atmospheric variable determining the MJO 
variability. Therefore, we focus on the intraseasonal meridional moisture advection, and further decompose it into 9 
terms by decomposing the meridional wind and the moisture content into the climatological component, the intra-
seasonal component and the high-frequency component respectively (see Text S1 in Supporting Information S1 for 
more details). Our results suggest that both all_obs and no_insitu mainly underestimate the following terms: the intra-
seasonal meridional wind advecting the climatological moisture, the intraseasonal meridional wind advecting the 
intraseasonal moisture, and the high-frequency meridional wind advecting the high-frequency moisture (Figure S4a 
in Supporting Information S1). These three terms can explain ∼70% of the total underestimation of the meridional 
MSE advection. Among these 3 terms, the intraseasonal meridional wind advecting the climatological moisture term 
can explain an underestimation of ∼1 Wm −2 in model forecasts, and is also the  term that has the highest correlation 
coefficient (∼0.7) with the total intraseasonal meridional moisture advection (Figure S4b in Supporting Informa-
tion S1). Our results are consistent with the existing studies, which have shown that the intraseasonal anomalous wind 
advecting the mean state moisture is a dominant process in the horizontal moisture advection (e.g., Adames, 2017; 
DeMott et al., 2018; Jiang et al., 2018; Kang et al., 2021; Maloney, 2009). Based on our results and previous studies, 
we single out the intraseasonal meridional wind advecting the climatological moisture term for further analysis.

When the intraseasonal meridional winds blow from the wet region to the dry region, they help moisten the 
tropical atmosphere. Previous studies have suggested that the forecast models tend to underestimate the MJO due 
to a systematic dry bias in the seasonal mean state moisture (Gonzalez & Jiang, 2017; H.-M. Kim, 2017; Y. Lim 
et al., 2018). Therefore, we are motivated to investigate the mean state moisture bias in all_obs and no_insitu.

Figure 4 shows that both all_obs and no_insitu have significant dry biases over the warm pool at 700 hPa. Such 
dry biases are also seen for the Integrated Water Vapor (Figure S5 in Supporting Information S1). To further 
understand how these dry biases in the low-frequency moisture field contribute to the underestimated meridional 
advection in the model forecast, we decompose the term of intraseasonal anomalous wind advecting the climato-
logical moisture gradient into sub-terms step by step.

As aforementioned, we calculate the daily anomalies in each MSE budget term by removing the 23-year daily 
climatology, and then averaging them over a 10-day window to get the intraseasonal signals. Before averaging 
over the 10-day window, we have the anomalous daily meridional advection, which includes a term −�′ ��

��
 on 

each pressure level, where 𝐴𝐴 𝐴𝐴′ is the daily meridional wind velocity anomaly, and 𝐴𝐴 𝐴𝐴 is the climatological specific 
humidity of that day.

By assuming the climatological specific humidity does not change over the 10-day window, we have

−𝑣𝑣′
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝑣𝑣′

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 (2)

where the bar stands for the time average over the 10-day window. Since the climatological 𝐴𝐴 𝐴𝐴 does not change 
much within 10 days, we treat 𝐴𝐴 𝐴𝐴 as a constant 𝐴𝐴 𝑄𝑄 . Hence, the intraseasonal meridional advection anomaly provided 
by the daily meridional wind anomaly advecting the climatological moisture gradient can be rewritten into the 

10-day averaged intraseasonal meridional wind anomaly 𝐴𝐴

(
𝑣𝑣′
)
 advecting the 10-day averaged climatological mois-

ture gradient 𝐴𝐴

(
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)
 . For simplicity, we drop the bar in the following derivation.

For each aforementioned MJO_P event with a positive pre-convection MSE tendency in observation, all_obs or 
no_insitu, we now have the corresponding 𝐴𝐴 𝐴𝐴′ and 𝐴𝐴 𝐴𝐴 for its MSE accumulation window, and these two variables 
can both be written as the composite mean plus the deviation from the composite mean. Then, we are able to 
decompose the −�′ ��

��
 into

−𝑣𝑣′
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −

(
𝑣𝑣′ + 𝑣𝑣′

𝑑𝑑

)𝜕𝜕
(
�̂�𝜕 +𝜕𝜕𝑑𝑑

)

𝜕𝜕𝜕𝜕
= −𝑣𝑣′

𝜕𝜕�̂�𝜕

𝜕𝜕𝜕𝜕
− 𝑣𝑣′

𝜕𝜕𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕
− 𝑣𝑣′

𝑑𝑑

𝜕𝜕�̂�𝜕

𝜕𝜕𝜕𝜕
− 𝑣𝑣′

𝑑𝑑

𝜕𝜕𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕

 (3)
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where the hat denotes the composite mean, and the subscript 𝐴𝐴 𝐴𝐴 means the difference between the individual event 
and the composite mean. Then we write Equation 3 into its composite form

−𝑣𝑣′
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝑣𝑣′

𝜕𝜕�̂�𝜕

𝜕𝜕𝜕𝜕
− 𝑣𝑣′

𝜕𝜕𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕
− 𝑣𝑣′

𝑑𝑑

𝜕𝜕�̂�𝜕

𝜕𝜕𝜕𝜕
− 𝑣𝑣′

𝑑𝑑

𝜕𝜕𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕
= −𝑣𝑣′

𝜕𝜕�̂�𝜕

𝜕𝜕𝜕𝜕
− 𝑣𝑣′

𝑑𝑑

𝜕𝜕𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕
 (4)

Only two terms are left on the right hand side. −�̂′ ��̂
��

 is the composite mean intraseasonal meridional wind  

anomaly 𝐴𝐴

(
𝑣𝑣′
)
 advecting the composite mean climatological moisture gradient 𝐴𝐴

(
𝜕𝜕�̂�𝑄

𝜕𝜕𝜕𝜕

)
 . −�′�

�̂��
��

 is the composite of 

the wind deviation advecting the moisture gradient deviation. Since the composite variables 𝐴𝐴 𝑣𝑣′ and 𝐴𝐴 �̂�𝑄 highlight 
the general moisture and circulation pattern during the MSE accumulation stage of the MJO_P events, we focus 

on the −�̂′ ��̂
��

 term only in the present discussion.

To compare the meridional advection in the model and the meridional advection in the observation, we drop the 

hat in the composite term −�̂′ ��̂
��

 for simplicity and rewrite it into

−𝑣𝑣′𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖
= −

(
𝑣𝑣′
𝑜𝑜𝑜𝑜𝑜𝑜

+ 𝑣𝑣′∗𝑖𝑖
)𝜕𝜕

(
𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜 +𝜕𝜕∗

𝑖𝑖

)

𝜕𝜕𝜕𝜕
= −𝑣𝑣′

𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝜕𝜕
− 𝑣𝑣′

𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝜕𝜕∗

𝑖𝑖

𝜕𝜕𝜕𝜕
− 𝑣𝑣′∗𝑖𝑖

𝜕𝜕𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝜕𝜕
− 𝑣𝑣′∗𝑖𝑖

𝜕𝜕𝜕𝜕∗

𝑖𝑖

𝜕𝜕𝜕𝜕
 (5)

where 𝐴𝐴 𝐴𝐴  represents either all_obs or no_insitu, 𝐴𝐴 𝐴𝐴′∗
𝑖𝑖

 is the model bias of the composite mean intraseasonal merid-
ional wind anomaly based on the observation, and 𝐴𝐴 𝐴𝐴∗

𝑖𝑖
 is the model bias of the composite mean climatological 

moisture.

Equation 5 shows that the difference between −�′�
���
���

 and −�′���
�����
��

 are rooted in the following three terms:

𝑇𝑇 𝑖𝑖

1
= −𝑣𝑣′

𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝜕𝜕∗

𝑖𝑖

𝜕𝜕𝜕𝜕
 (6)

Figure 4. (a, c, e, and g) show the development of the weekly mean specific humidity bias at 700 hPa in all_obs from week1 to week 4. The right column is the same 
as the left but for no_insitu. The two-sided t-test has been applied and only values exceeding the 95% significance level are plotted.
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𝑇𝑇 𝑖𝑖

2
= −𝑣𝑣′∗𝑖𝑖

𝜕𝜕𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝜕𝜕
 (7)

𝑇𝑇 𝑖𝑖

3
= −𝑣𝑣′∗𝑖𝑖

𝜕𝜕𝜕𝜕∗

𝑖𝑖

𝜕𝜕𝜕𝜕
 (8)

T1 is the observed meridional wind anomaly advecting the climatological moisture gradient bias, T2 is the merid-
ional wind anomaly bias advecting the observed climatological moisture gradient, and T3 is the quadratic term 
where the wind bias is advecting the moisture gradient bias.

We calculate T1, T2, T3 and their sum Tsum for both all_obs and no_insitu at each pressure level. The vertical 
profile of each term is shown in Figure 5. In both all_obs and no_insitu, T2 is one order of magnitude greater 
than T1 and T3, and it dominates the vertical structure of Tsum. After applied the mass-weighted vertical integral, 
and multiplied by the constant Lv, T2 leads to a meridional advection underestimation of 1 Wm −2 in all_obs and 
of 0.65 Wm −2 in no_insitu, and T2 accounts for 91% and 85% of the integrated Tsum in all_obs and no_insitu 
respectively.

Therefore, it is the intraseasonal meridional wind bias instead of the dry bias in the model that indeed contributes 
the most to the difference between 𝐴𝐴 𝐴𝐴′

𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖
 and −�′���

�����
��

 , and is thus responsible for a significant part of the meridi-
onal advection underestimation in the model forecast. The same analysis on a lag −2 MSE accumulation window 

Figure 5. (a) Shows the vertical profile of T1 in all_obs (blue) and in no_insitu (red). (b–d) are the same as (a) but for T2, T3, and Tsum respectively. See the definition 
of these terms in Section 3.3.2. The unit of the x axis is kgkg −1s −1. The terms are calculated using the lag −6 window. Note that the scale for (a) and (c) is one order of 
magnitude smaller than that of (b and d). These terms are calculated over the eastern MC (130°E−150°E, 15°N–15°S).
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(from lag −11 to lag −2) has also been done, and the conclusions remain the same (Figure S6 in Supporting 
Information S1).

To further illustrate why the wind bias contributes more than the dry bias, a visualization of each term on a Lon 
Lat map for the 700 hPa pressure level is provided in Figure 6. In general, over the eastern MC (the red box), the 
observed meridional winds diverge away from where the model maximum dry bias is and the model meridional 
wind biases converge to where the observed climatological maximum moisture is, which results in a negative T1 
and a negative T2 respectively. For T3, the wind biases converge to the maximum dry bias, thus causing a positive 
meridional advection. This is consistent with what we have seen in Figures 5a–5c. However, the gradient of the 
dry bias is much smaller than the gradient of the observed climatological moisture, while the wind bias is of the 
same magnitude as the observed meridional wind (e.g., Figures 6a and 6d). Hence, T2 is much greater than T1 and 
T3. Though other studies consider the improvement in the moisture field as key to improving the MJO prediction 
furthermore (e.g., Gonzalez & Jiang, 2017; Jiang, 2017; H.-M. Kim, 2017; Y. Lim et al., 2018), this finding 
suggests that in the ECMWF subseasonal forecast system, the circulation field is still a large source of the MJO 
prediction error, and should be a target of future improvement.

4. Summary and Discussion
Two ocean OSEs have been carried out by ECMWF, one with all ocean in situ observations assimilated, and the 
other with all in situ observations removed from the data assimilation system. Two sets of subseasonal forecasts 
are initialized from those two ocean OSEs respectively (all_obs and no_insitu) and they are the same otherwise. 
Thus, we are able to assess the impact of the subsurface ocean initialization with ocean subsurface observation 
assimilation on predicting MJO propagation across the MC in these ECMWF subseasonal forecast experiments.

It should be noted that, due to the limited forecast sample size (12 initializations per year for 23 years) and the 
limited temporal output (12 hourly instantaneous values), the discussion of the seasonality and the diurnal cycle 

Figure 6. A visualization of the components of the three T terms at 700 hPa. The background colors represent the moisture component, and the overlapped arrows 
represent the meridional wind component. The first and the second columns visualize T1, T2 and T3 for all_obs and no_insitu respectively. The third column shows 
the differences between all_obs and no_insitu in each wind and moisture component for each T term. The red box denotes our region of interest (130°E−150°E, 
15°N–15°S).
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are excluded in this study. We are aware that both seasonality and the diurnal cycle are important in understanding 
the MC barrier effect. However, they would not affect our conclusions in this study as discussed below.

First, we carry out composite analyses to compare the SST mean state in all_obs and no_insitu. During the fore-
cast, the SST differences between two experiments grow. Compared to no_insitu, all_obs has warmer regional 
and large-scale SST. Therefore, we speculate if such SST differences can lead to an improved prediction for MJO 
propagation across the MC in all_obs compared to no_insitu.

However, based on the evaluation using RMMI and the newly developed OLRa tracking method, no improvement 
has been found in all_obs. Both all_obs and no_insitu exaggerate the MC barrier effect to a similarly large extent. 
And there is no single event where one experiment has better prediction skill compared to the other. The initial 
SST differences in the tropical oceans do not lead to a MJO forecast difference.

Why does the ocean subsurface DA have no impact on MJO propagation across the MC in ECMWF subseasonal 
forecast model as expected? We perform MJO process diagnostics to explore the possibility that the atmospheric 
biases of the model dominate the forecast error growth, which might hinder the potential role played by the 
ocean state differences. With MSE budget analysis, we confirm that all_obs and no_insitu perform similarly on 
predicting MJO propagation across the MC. We also find that compared to the observation, both all_obs and 
no_insitu significantly underestimate the meridional advection over the eastern MC during the pre-convection 
MSE accumulation period. Since the intraseasonal meridional wind advecting the climatological moisture is 
not only one of the major bias sources of the underestimated meridional advection in the model, but also highly 
correlated with the total meridional moisture advection in both the observation and the model forecasts, we 
further compare the  term of the composite mean intraseasonal wind anomaly advecting the composite mean 
low-frequency moisture field between the model forecast and the observation. We find that both all_obs and 
no_insitu underestimate  this term, which is overwhelmingly due to the biases in the intraseasonal meridional 
winds. Such an atmospheric origin of the forecast errors may help explain the forecast insensitivity to SST.

This study suggests that overcoming the MC prediction barrier in ECMWF subseasonal forecast would require 
reducing the MJO-related meridional wind bias. This is consistent with what H. Kim et al.  (2019) has found 
when studying the SubX and S2S reforecasts. Their result shows that though with the best represented mean 
moisture state among all models, the ECMWF model still has fast damping of the horizontal advection, which is 
no better than many other models with larger dry biases. That said, improving the mean moisture field remains an 
important step to improving the MJO forecast in the ECMWF subseasonal forecast system. Bias development is a 
result of many processes entangled together, thus improving one field could also potentially lead to improvement 
in others.

Data Availability Statement
ORAS5 data are provided by ECMWF and downloaded from https://resources.marine.copernicus.eu. Interpolated 
OLR data are provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their web site at https://psl.
noaa.gov/data/gridded/data.interp_OLR.html (Liebmann & Smith, 1996). ERA5 data are provided by ECMWF 
and downloaded from https://cds.climate.copernicus.eu/ (Hersbach et al., 2018a, 2018b). The subseasonal fore-
cast data we used in this study has been published and is accessible at https://doi.org/10.25810/Z9EH-3940.
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